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Emerson, and Joseph Sifakis 
were honored for their role in 
developing Model-Checking 
into a highly effective verifi­

cation technology, widely adopted in 
the hardware and software industries. 

Let's talk about the history of formal 
software verification. 

E. ALLEN EMERSON By the late 1960s, 
we recognized that a program should 
be viewed as a mathematical object. 
It has a syntax and semantics and for­
mally defined behavior engendered by 
that syntax and semantics. The idea 
was to give a mathematical proof that 
a program met a certain correctness 
specification. So one would have some 
axioms characterizing the way the pro­
gram worked for such-and-such an 
instruction and some inference rules, 
and one would construct a formal 
proof of the system, like philosophers 
do sometimes. 

But it never really seemed to scale up 
to large programs. You ended up with 
something like 15-page papers proving 
that a half-page program was correct. It 
was a great idea but didn't seem to pan 
out in practice. 

What about the history of model 
checking? 

EDMUND M. CLARKE The birth of model 
checking was quite painful at times. 
Like most research on the boundary be­
tween theory and practice, theoreticians 
thought the idea was trivial, and system 
builders thought it was too theoretical. 
Researchers in formal methods were 

even less receptive. Research in the for­
mal-methods community in the 1980s 
usually consisted of designing and 
verifying tricky programs with fewer 
than 50 lines using only pen and paper. 
If anyone asked how such a program 
worked in practice on a real computer, 
it would have been interpreted as an in­
sult or perhaps simply as irrelevant. 

EAE The idea behind model check­
ing was to avoid having humans con­
struct proofs. It turns out that many 
important programs, such as operating 
systems, have ongoing behavior and 
ideally run forever; they don't just start 
and stop. In 1977, Amir Pnueli suggest­
ed that temporal logic could be a good 
way to describe and reason about these 
programs. Now, if a program can be 
specified in temporal logic, then it can 
be realized as a finite state program— 
a program with just a finite number 
of different configurations. This sug­
gested the idea of model checking—to 
check whether a finite state graph is a 
model of a temporal logic specifica­
tion. Then one can develop efficient 
algorithms to check whether the tem­
poral-logic specification is true of the 
state graph by searching through the 
state graph for certain patterns. 

EMC Yes, Allen and I noticed that 
many concurrent programs had what 
we called "finite state synchronization 
skeletons." (Joseph Sifakis and J.P. 
Queille made the same observation, in­
dependently.) For example, the part of 
a mutual-exclusion program that han­
dles synchronization does not depend 
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on the data being exchanged in the 
critical sections. Many communication 
protocols had the same property. We 
decided to see if we could analyze finite-
state programs by algorithmic means. 

How exactly does that work? 
EAE You have a program described by 

its text and its specification described 
by its text in some logic. It's either true 
or false that the program satisfies the 
specification, and one wants to deter­
mine that. 

JOSEPH SIFAKIS Right. You build a 
mathematical model [of the program], 
and on this model, you check some 
properties, which are also mathemati­
cally specified. To check the property, 
you need a model-checking algorithm 
that takes as input the mathematical 
model you've constructed and then 
gives an answer: "yes," "no," or "I don't 
know." If the property is not verified, 
you get diagnostics. 

And to formalize those specifica­
tions, those properties... 

EAE What people really want is the 
program they desire, an inherently pre-
formal notion. They have some vague 
idea about what sort of program they 
want, or perhaps they have some sort 
of committee that came up with an 
English prose description of what they 
want the program to do, but it's not a 
mathematical problem. 

So one benefit of model checking 
is that it forces you to precisely specify 
your design requirements. 

EMC Yes. But for many people, the 
most important benefit is that if the 
specification isn't satisfied, the model 
checker provides a counterexample 
execution trace. In other words, it pro­
vides a trace that shows you exactly 
how you get to an error that invalidates 
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your specification, and often you can 
use that to find really subtle errors in 
design. 

How have model-checking algo­
rithms evolved over the years? 

EMC Model-checking algorithms 
have evolved significantly over the past 
27 years. The first algorithm for model 
checking, developed by Allen and my­
self, and independently by Queille 
and Sifakis, was a fixpoint algorithm, 
and running time increased with the 
square of the number of states. I doubt 
if it could have handled a system with 
a thousand states. The first imple­
mentation, the EMC Model Checker 
(EMC stands for "Extended Model 
Checker"), was based on efficient 
graph algorithms, developed together 
with Allen and Prasad Sistla, another 
student of mine, and achieved linear 
time complexity in the size of the state 
space. We were able to verify designs 
with about 40,000 states. Because of 
the state-explosion problem, this was 
not sufficient in many cases; we were 
still not able to handle industrial de­
signs. My student Ken McMillan then 
proposed a much more powerful tech­
nique called symbolic model checking. 
We were able to check some examples 
with 10 to the one-hundredth power 
states (1 with a hundred zeros after it). 
This was a dramatic breakthrough but 
was still unable to handle the state-ex­
plosion problem in many cases. In the 
late 1990s, my group developed a tech­
nique called bounded model check­
ing, which enabled us to find errors 
in many designs with 10 to the 10,000 
power states. 

EAE These advances document the 
basic contribution of model checking. 
For the first time, industrial designs 
are being verified on a routine basis. 
Organizations, such as IBM, Intel, Mi­
crosoft, and NASA, have key applica­
tions where model checking is useful. 
Moreover, there is now a large mod­
el-checking community, including 
model-checking users and researchers 
contributing to the advance of model-
checking technology. 

What are the limitations of model 
checking? 

JS You have two basic problems: 
how to build a mathematical model 
of the system and then how to check a 
property, a requirement, on that math­
ematical model. 
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First of all, it can be very challeng­
ing to construct faithful mathematical 
models of complex systems. For hard­
ware, it's relatively easy to extract math­
ematical models, and we've made a lot 
of progress. For software, the problem 
is quite a bit more difficult. It depends 
on how the software is written, but we 
can verify a lot of complex software. 
But for systems consisting of software 
running on hardware, we don't know 
how to construct faithful mathemati­
cal models for their verification. 

The other limitation is in the com­
plexity of the checking algorithm, and 
here we have a problem called the 
state-explosion problem (that Clarke 
referred to earlier), which means that 
the number of the states may go expo­
nentially high with the number of com­
ponents of the system. 

EMC Software verification is a Grand 
Challenge. By combining model check­
ing with static analysis techniques, it 
is possible to find errors but not give 
a correctness proof. As for the state-
explosion problem, depending on the 
logic and model of computation, you 
can prove theoretically that it is inevi­
table. But we've developed a number of 
techniques to deal with it. 

Such as? 
EMC The most important technique 

is abstraction. The basic idea is that 
part of the program or the protocol 
you're verifying doesn't really have any 
effect on the particular properties that 
you're checking. So what you can do is 
simply eliminate those particular parts 
from the design. 

You can also combine model check­
ing with compositional reasoning, 
where you take a complex design and 
break it up into smaller components. 
Then you check those smaller compo­
nents to deduce the correctness of the 
entire system. 

How large are the programs we can 
currently verify with model checking? 

EMC Well, first of all, there's not 
always a natural correspondence be­
tween a program's size and its com­
plexity. But I would say we can often 
check circuits with around 10 to the 
100th power states (1 with a hundred 
zeros after it). 

JS Right. We know how to verify sys­
tems of medium complexity today— 
it's difficult to say but perhaps a pro­
gram of around 10,000 lines. But we 



don't know how to verify very complex 
systems. 

EMC We're always playing a catch-
up game; we re always behind. We've 
developed more powerful techniques, 
but it's still difficult to keep up with the 
advance of technology and the com­
plexity of new systems. 

Can we use model checking to check 
concurrent programs? 

EAE Arguably, model checking is a 
very natural fit for parallel program­
ming. Typically, we treat parallelism 
as a nondeterministic—or, informally, 
random—choice, so, in a way a parallel 
program is a more complex sequential 
program, with many nondeterministic 
behaviors. Model checking is very well 
suited to describing and reasoning 
about the associated coordination and 
synchronization properties of parallel 
programs. 

EMC Concurrent programs are much 
more difficult to debug because it's 
difficult for humans to keep track of a 
lot of things that are happening all at 
once. Model checking is ideal for that. 

JS But if you have programs that 
interact with the physical environ­
ment, time becomes very important. 
For these systems, verification is much 
more complicated. 

Do we have any algorithms that can 
operate directly on implementable 
code? 

EMC To verify the process of trans­
lating a design to code, or to verify 
the code itself, is much more diffi­
cult. Some successful model checkers 
use this approach, however. The Java 
Pathfinder model checker developed 
at NASA Ames generates byte code for 
a Java program and simulates the byte 
code to find errors. 

JS The best available technology is 
proprietary technology that was de­
veloped by U.S. companies. But most 
of the code-level model checkers are 
used to verify sequential software. If 
you want to verify concurrent software, 
then you need to be very careful. 

EMC The SLAM model checker de­
veloped at Microsoft Research for find­
ing errors in Windows device drivers is 
probably the most successful software 
model checker. It is now distributed to 
people who want to write device driv­
ers for Windows. However, it is hardly 
a general-purpose software model 
checker. 

EAE In hardware verification, Verilog 
and VHDL are widely used design de­
scription languages. Many industrial 
model checkers typically accept de­
signs described in these languages. 

Is model checking something cur­
rently taught to undergraduates? 

JS Formal verification is definitely 
taught in Europe. Europe has tradition­
ally had a stronger community in for­
mal methods, and I'd like to say it has 
also traditionally had a stronger com­
munity in semantics and languages. 

EMC Yes, there's always been more in­
terest in verification in Europe than in 
the U.S. Most of the major universities 
here—CMU, Stanford, UC Berkeley, U. 
Texas, and so on—do offer courses in 
model checking at both undergradu­
ate and graduate levels, but it hasn't fil­
tered down to schools where no one is 
doing research in the topic. Part of that 
has to do with the availability of appro­
priate textbooks; good books are just 
beginning to come out. 

EAE Formal methods are being 
taught with some frequency [in the 
U.S.], but they are not broadly incor­
porated into the core undergraduate 
curriculum as required courses to 
the extent that operating systems and 
data structures are. It is probably more 
prevalent at the graduate level. But the 
distinction between undergraduate 
and graduate is not clear-cut. At many 
schools advanced undergrad and be­
ginning grad overlap. 
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What's in store for model checking 
and formal verification? 

EMC I intend to continue looking at 
ways of making model checking more 
powerful. The state explosion phenom­
enon is still a difficult problem. I have 
worked on it for 27 years and probably 
will continue to do so. Another thing I 
want to do is focus on embedded soft­
ware systems in automotive and avion­
ics applications. These programs are 
often safety-critical. For example, in a 
few years, cars will be "drive-by-wire"; 
there will be no mechanical linkage 
between the steering wheel and the 
tires. The software will definitely need 
to be verified. Fortunately, embedded 
software is usually somewhat simpler 
in structure, without complex point­
ers; I think it may be more amenable to 
model checking techniques than gen­
eral software. 

JS Personally, I believe we should 
look into techniques that allow some 
sort of compositional reasoning, where 
we infer global properties from local 
properties of the system, because of 
the inherent limitations of techniques 
based on the analysis of a global model. 
I'm working on this, as well as on theo­
ries of how to build systems out of com­
ponents, component-based systems. 

EAE Model checking has caused a 
sea change in the way we think about 
establishing program correctness, 
from proof-theoretic (deductive proof) 
to model-theoretic (graph search). I 
think we will continue to make more 
or less steady progress, but the pace of 
development of hardware and software 
is going to accelerate. Whether we ever 
catch up I don't know. Systems that 
are being designed are getting bigger 
and messier. The seat-of-the-pants ap­
proach will no longer work. We'll have 
to get better at doing things modularly, 
and we'll have to have better abstrac­
tions. 

Leah Hoffman writes about science and technology 
from Brooklyn, NY. 
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